Diameter of the cone ABO
=10cm
∴ radius
r1=102=5cm
Height of the cone ABO
=h1=10cm
Height of the cone
A|B|O=h2=4cm
First, let us find the other required data.
Radius of cone
A|B|O=r2Let the Slant height of cones
ABO and
A|B|O, be
l1 and
l2 respectively.
∴r1r2=h1h2,5r2=104
∴r2=5×410=2cm
l21=h21+r21=102+52=100+25=125
∴l1=√125=5√5cm
l22=h22+r22=42+22=16+4=20
∴l2=√20=2√5cm
(i) Lateral surface area of cone ABO=πr1l1=π×5×5√5=25√5π
∴ LSA of cone ABO=25√5πcm2
Lateral surface area of cone A|B|O=πr2l2=π×2×2√5=4√5π
∴ LSA of cone A|B|O=4√5πcm2
∴ Lateral surface area of frustum= LSA of cone ABO− LSA of come A|B|O
=25√5π−4√5π=21√5π=21×√5×227=66√5cm2
∴ LSA of frustum=66√5sq. cm. or 147.84cm2
(ii) Total surface area of cone ABO=πr1(r1+l1)
=π×5×(5+5√5)=π×5×5(1+√5)
∴ TSA of cone ABO=25(1+√5)π cm2
Lateral surface area of cone A|B|O=πr2l2=π×2×2√5=4√5π
∴ LSA of cone A|B|O=4√5πcm2
The total surface area of frustum= TSA of cone ABO− LSA of cone A|B|O+πr22
=25(1+√5)π−4√5π+4π
=π(25+25√5−4√5+4)
=π(29+21√5)
=227×75.95
∴ TSA of frustum=238.70cm2
(iii)Volume of cone ABO=13πr21h1=13×π×5×5×10
∴ Volume of cone ABO=2503πcm3
Volume of cone A|B|O=13πr22h2=13×π×2×2×4
∴ Volume of cone A|B|O=163πcm3
∴ Volume of the frustum= Volume of cone ABO− Volume of cone A|B|O
=2503π−163π=2343π
∴ Volume of the frustum=78πcm3 or 245.14cm3
We can also directly find the lateral surface area, total surface area, and volume of the frustum by using the formulae.