CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

From where does OAA in Krebs cycle come from?

Open in App
Solution

When glucose is converted to pyruvate during glycolysis , two adenosine triphosphates ( ATPs ) are formed, but most of the energy in the original glucose remains in pyruvate. In most aerobic cells, the pyruvate formed by glycolysis is further degraded in a pathway called the Krebs cycle (also called the tricarboxylic acid cycle or citric acid cycle). In the Krebs cycle, the carbon of pyruvate is fully oxidized to carbon dioxide in a series of oxidationreduction reactions. During these reactions, much of the energy in the original pyruvate is carried as high-energy electrons by the electron shuttles NADH and FADH 2 . These electrons will ultimately be passed to the electron transport chain, where their energy will be used to synthesize ATP by oxidative phosphorylation . Much more ATP is made by the Krebs cycle and oxidative phosphorylation than by glycolysis alone. In eukaryotic cells , pyruvate is transported to the mitochondrial matrix , where the Krebs cycle takes place. Before entering the Krebs cycle, the three-carbon pyruvate is oxidized to a two-carbon acetate molecule and carbon dioxide, producing one molecule of NADH. The acetate joins to a molecule of coenzyme A to form acetyl coenzyme A, which carries the acetyl group to the Krebs cycle. The acetate enters the cycle by combining with OAA (oxaloacetic acid) to form citric acid. At this point, two of the original three carbon atoms in pyruvate have been incorporated into citric acid and one has been oxidized to carbon dioxide, and one molecule of NADH has been produced. Read more: https://www.biologyreference.com/Ho-La/Krebs-Cycle.html#ixzz587YkObF9

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Aerobic Respiration
BIOLOGY
Watch in App
Join BYJU'S Learning Program
CrossIcon