The correct option is
C ab - cd < 0
Given
f(x)=asinx+bcosxcsinx+dcosx
For function to be monotonically decreasing, dydx<0
∴(csinx+dcosx)ddx(asinx+bcosx)−(asinx+bcosx)ddx(csinx+dcosx)(csinx+dcosx)2<0
∴(csinx+dcosx)(acosx−bsinx)−(asinx+bcosx)(ccosx−dsinx)(csinx+dcosx)2<0
Multiply both sides by (csinx+dcosx)2, we get,
∴(csinx+dcosx)(acosx−bsinx)−(asinx+bcosx)(ccosx−dsinx)<0
∴(ac.sinx.cox−bcsin2x+adcos2x−bdsinx.cosx)−(ac.sinx.cox−adsin2x+bccos2x−bdsinx.cosx)<0
∴ac.sinx.cox−bcsin2x+adcos2x−bdsinx.cosx−ac.sinx.cox+adsin2x−bccos2x+bdsinx.cosx<0
∴−bcsin2x+adcos2x+adsin2x−bccos2x<0
∴−bc(sin2x+cos2x)+ad(sin2x+cos2x)<0
∴−bc(1)+ad(1)<0
∴ad−bc<0