Function f(x)=[λsinx+6cosx][2sinx+3cosx] is monotonic increasing, if
λ>1
λ<1
λ<4
λ>4
Explanation for the correct option:
Step 1. Find the value of λ:
Given, f(x)=λsinx+6cosx2sinx+3cosx
On differentiating it with respect to x, we get
f'(x)=[(2sinx+3cosx)(λcosx-6sinx)−(λsinx+6cosx)(2cosx-3sinx)](2sinx+3cosx)2
[∵f'(x)=u(x)v(x)=u'(x).v(x)-u(x).v'(x)v(x)2]
⇒ f'(x)=3λ(sin2x+cos2x)–12(sin2x+cos2x)2sinx+3cosx2
Step 2. The function is monotonic increasing, if f′(x)>0
⇒3λ(sin2x+cos2x)−12(sin2x+cos2x)>0
⇒ 3λ−12>0 ∵sin2θ+cos2θ=1
∴λ>4
Hence, Option ‘D’ is Correct.