f(x)=x(x-p)(q-p)+x(x-q)(p-q),p≠q. What is the value of f(p)+f(q)?
f(p-q)
f(p+q)
f(p(p+q))
f(q(p-q))
Explanation for the correct option:
Find the value of f(p)+f(q):
f(x)=x(x-p)(q-p)+x(x-q)(p-q)
=-x(x-p)(p-q)+x(x-q)(p-q)
=(-x2+px+x2–qx)(p-q)
=(px–qx)(p-q)
=x(p-q)(p-q)
=x
∴f(x)=x
⇒f(p)=p
and f(q)=q
Then, f(p)+f(q)=p+q
=f(p+q)
Hence, Option ‘B’ is Correct.