Question 58 (g)
Subtract:
x3y2+3x2y2−7xy3 from x4+y4+3x2y2−xy3.
We have, x4+y4+3x2y2−xy3−(x3y3+3x2y2−7xy3)=x4+y4+3x2y2−xy3−x3y3−3x2y2+7xy3 On combining the like terms. =x4+y4+3x2y2−3x2y2−xy3+7xy3−x3y3=x4+y4+6xy3−x3y3
Question 56 (b)
Simplify the following by combining the like terms and then write whether the expression is a monomial, a binomial or a trinomial.
x4+3x3y+3x2y2−3x3y−3xy2+y4−3x2y2