wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

g(x)=limmxmf(x)+h(x)+32xm+4x+1 when x1 and g(1)=e3 such that f(x),g(x) and h(x) are continuous function at x=1 and f(1)h(1)=a(bg(1)) then a+b is

Open in App
Solution

limx1+g(x) =

limmxmf(x)+h(x)+32xm+4x+1

limmlimx1+{xmf(x)+h(x)+32xm+4x+1}

limmlimm1+⎪ ⎪ ⎪⎪ ⎪ ⎪f(x)+h(x)+3xm2+4x+1xm⎪ ⎪ ⎪⎪ ⎪ ⎪

g(1)=f(1)2

Similarly
g(1)=limx1g(x)=h(1)+35
f(1)=2g(1)
h(1)=5g(1)3
f(1)h(1)=3g(1)+3
3[1g(1)]
Ans.a=3,b=1,a+b=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon