General solution of sinx+cosx=mina∈R{1,a2−4a+6} is
A
nπ2+(−1)nπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2nπ+(−1)nπ4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nπ+(−1)n+1π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nπ+(−1)nπ4−π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dnπ+(−1)nπ4−π4 Given that, sinx+cosx=mina∈R{1,a2−4a+6} Now, a2−4a+6=(a−2)2+2 ∴mina∈R{1,a2−4a+6}=min{1,2}=1 ∴sinx+cosx=1 ⇒sin(x+π4)=1√2 ⇒x+π4=nπ+(−1)n⋅π4 ⇒x=nπ+(−1)nπ4−π4