General solution of sinx+cosx=mina∈R1,a2-4a+6 is
nπ2+-1nπ4
2nπ+-1nπ4
nπ+-1n+1π4
nπ+-1nπ4-π4
Explanation for the correct option:
Step 1. Find the general solution:
sinx+cosx=mina∈R1,a2-4a+6
Let f(a)=a2–4a+6
f'(a)=2a–4
If f'(a)=0
⇒ 2a–4=0
⇒ a=2>0
Now, f(2)=4–8+6
=2
∴min (1,a2–4a+6)=1
Thus, sinx+cosx=1
Step 2. Divide it by √2 on both sides,
⇒ 1√2sinx+1√2cosx=1√2
⇒ sinxcosπ4+cosxsinπ4=1√2 ∵cosπ4=12,sinπ4=12
⇒ sinx+π4=1√2 ∵sin(A+B)=sinA.cosB+cosA.sinB
⇒ x+π4=nπ+(-1)nπ4
⇒ x=nπ+(-1)nπ4–π4
Hence, Option ‘D’ is Correct.