The correct option is C nπ+(−1)nπ6−π6
3√3sin3x+cos3x+3√3sinxcosx=1
3√3sin3x+cos3x−1=3(√3sinx)(cosx)(1)
We know that
If a+b+c=0⇒a3+b3+c3=3abc
Now a=√3sinx,b=cosx,c=−1
a3+b3+c3−3abc=0
Possible only if a+b+c=0
√3sinx+cosx−1=0⇒√3sinx+cosx=1
√32sinx+12cosx=12⇒sin(x+π6)=sinπ6
⇒x+π6=nπ+(−1)nπ/6⇒x=nπ+(−1)nπ6−π6