General solution of the equation (√3−1)sinθ+(√3+1)cosθ=2 is
A
2nπ±π4+π12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
nπ±π4+(−1)nπ12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
nπ±π4−π12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nπ±π4−(−1)nπ12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2nπ±π4+π12 The given equation is (√3−1)sinθ+(√3−1)cosθ=2 Let (√3−1)=rsinα;(√3−1)=rcosα ⇒r=√(√3−1)2+(√3+1)2=2√2 and tanα=√3−1√3+1=tan15o ⇒α=15o=π12 Therefore, rsinαsinθ+rcosθcosα=2 ⇒2√2cos(θ−α)=2 ⇒θ−π12=2nπ±π4 ⇒θ=2nπ±π4+π12