The correct option is B nπ3
Given: sinx+sin5x=sin2x+sin4x
Using sinC+sinD=2sin(C+D2)cos(C−D2)
⇒2sin3x.cos2x=2sin3x.cosx
⇒sin3x.cos2x−sin3x.cosx=0
⇒sin3x.(cos2x−cosx)=0
Either sin3x=0 or cos2x=cosx
Case:1
sin3x=0⇒3x=nπ⇒x=nπ3 ∀n∈Z
Case: 2
cos2x=cosx2x=2nπ±x
x=2nπ,2nπ3 ∀ n∈Z
From Case:1 and Case: 2, combined solution is
x=nπ3 ∀ n∈Z