The correct option is B (4b2+1)y2=2a(sinx+2bcosx)+ce−2bx
The given differential equation is
ydydx+by2=acosx...(1)
Let y2=t then,
2ydydx=dtdx
Substitute it in equation (1)
12dtdx+bt=acosx
⇒dtdx+2bt=2acosx
The integrating factor (I.F.)
=e∫2.b.dx=e2bx
The solution of differential equation is calculated as
t.e2bx=∫2acosx.e2bx dx
⇒t.e2bx=2a4b2+1(sinx+2bcosx)e2bx+c
Now, putting y2=t
⇒y2e2bx=2a4b2+1(sinx+2bcosx)e2bx+c
⇒(4b2+1)y2=2a(sinx+2bcosx)+ce−2bx