General value of θ satisfying the eqation tan2θ+sec2θ=1 is
Prove x=nπ2 or x=(mπ2+3π8), where m, n∈I
x=nπ+3π4 or x=mπ+tan−112, where m, n∈I
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12