The correct option is D mπ,nπ±π3
By using, sec2θ=1cos2θ=1+tan2θ1−tan2θ
We can write the given equation as
tan2θ+1+tan2θ1−tan2θ
⇒tan2θ+1+tan2θ1−tan2θ=1
⇒tan2θ(1−tan2θ)+1+tan2θ=1−tan2θ
⇒3tan2θ−tan4θ=0
⇒tan2θ(3−tan2θ)=0
⇒tanθ=0ortanθ=±√3
Now, tanθ=0⇒θ=mπ, where m is an integer and tanθ=±√3tan[±π3]
⇒θ=nπ±π3 where n is an integer
Thus, θ=mπ,nπ±π3