The correct options are
B 2nπ3−π6
D 2nπ−π2
sin2x+cosx=0⇒cosx=−sin2x⇒cosx=cos(π2+2x)⇒x=2nπ±(π2+2x), n∈Z
When we consider the positive sign, we have :
⇒x=2nπ+(π2+2x)⇒−x=2nπ+π2⇒x=2mπ−π2 (m=−n)
When we consider the negative sign, we have :
⇒x=2nπ−(π2+2x)⇒x=2nπ3−π6