We will first show that f is not onto.
Checking f is not onto.
Letf:N→Nbef(x)=x+1Lety=f(x),whereyϵN∴y=x+1⇒x=y−1fory=1,x=1−1=0
But 0 is not a natural no.
∴f is not onto.
Finding gof:
f(x)=x+1andg(x)={x−1,x>11,x=1}
forx=1f(x)=x+1;g(x)=1Sinceg(x)=1,g(f(x))=1Sogof=1Forx>1f(x)=x+1,g(x)=x−1Sinceg(x)=x−1,g(f(x))=f(x)−1gof=(x+1)−1⇒gof=xSo,gof={x,x>11,x=1}Letgof=y,whereyϵNSo,y={x,x>11,x=1}
here y is a natural no.As y=x.
So,x is also a natural no.
hence, gof is onto.