Letf(x)=xandg(x)=|x|where:f:N→zandg:z→zg(x)=|x|={x,x≥0−x,x<0}
checking g(x) injective (one-one).
g(1)=|1|=1g(−1)=|1|=1
Since,different elements 1,−1 have the same image 1,∴g is not injective (one-one).
checkinggof injective (one-one).
f:N→z&g:z→zf(x)=xandg(x)=|x|gof(x)=g(f(x))=|f(x)|=|x|={x,x≥0−x,x<0}
here gof(x):N→z
So,x is always natural no.
Here|x| will always be a natural number.
So,gof(x) has a unique image.
∴gof(x) is injective.