at the point of extremum, f'(x) changes its sign
orsayf′(x)=0(a)f(x)=2x2+4x−16f′(x)=4x+4=0∴x=−1asf′(x)changesfrom−veto+ve∴atx=−1isapointofminimaandf(−1)=2(−1)2+4(−1)−16=2−4−16=−18(b)f(x)=−x2−6x−8f′(x)=−2x−6=0∴x=−3asf′(x)changessignfrom+veto−ve,
hence x=-3 is a point of maxima and maximum valuef(−3)=−(−3)2−6(−3)−8=−9+18−8=1