Given 0≤x≤12, then the value of tansin-1x√2+√1-x2√2-sin-1x is
1
3
-1
13
Explanation for the correct option:
Step 1. Find the value of given equation:
For 0≤x≤12,
tansin-1x√2+1-x2√2-sin-1x
=tansin-1x+1-x2√2–sin-1x
Step 2. Put sin-1x=θ
⇒ x=sinθ
=tansin-1sinθ+[1–sin2θ]√2–θ ∵sin2+cos2=1
=tansin-11√2sinθ+1√2cosθ–θ
=tansin-1cosπ4×sinθ+sinπ4×cosθ–θ
=tansin-1sinθ+π4–θ ∵sinAcosB+cosAsinB=sin(A+B)
=tanθ+π4–θ
=tanπ4
=1
Hence, Option ‘A’ is Correct.