wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given a1=12(a0+Aa0),

a2=12(a1+Aa1)andan+1=12(an+Aan) for n 2, where a > 0, A > 0. Prove that anAan+A=(a1Aa1+A)2n1

Open in App
Solution

a1=12(a0+Aa0),a2=12(a1+Aa1)

and an+1=12(an+Aan)

Let P(n) : anAan+A=(a1Aa1+A)2n1

For n = 1

a1Aa1+A=(a1Aa1+A)2n1

a1Aa1+A=(a1Aa1+A)

P(n) is true for n = 1

Let P(n) is true for n = k

akAak+A=(a1Aa1+A) .........(i)

We have to show that

ak+1Aak+1+A=(a1Aa1+A)2k

(ak+1Aak+1+A)2n

= ⎢ ⎢ ⎢12(ak+AakA)12(ak+Aak)+A⎥ ⎥ ⎥2n

=[(ak)2+A2akA(ak)2+A2akA]2n

=(akA)2(ak+A)2

=[akAak+A]21

=[a1Aa1+A]2k

P(n) is true for n = k + 1

P(n) is true for all nϵN by PMI.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon