Given a1=12(a0+Aa0),
a2=12(a1+Aa1)andan+1=12(an+Aan) for n ≥ 2, where a > 0, A > 0. Prove that an−√Aan+√A=(a1−√Aa1+√A)2n−1
a1=12(a0+Aa0),a2=12(a1+Aa1)
and an+1=12(an+Aan)
Let P(n) : an−√Aan+√A=(a1−√Aa1+√A)2n−1
For n = 1
a1−√Aa1+√A=(a1−√Aa1+√A)2n−1
a1−√Aa1+√A=(a1−√Aa1+√A)
⇒ P(n) is true for n = 1
Let P(n) is true for n = k
ak−√Aak+√A=(a1−√Aa1+√A) .........(i)
We have to show that
ak+1−√Aak+1+√A=(a1−√Aa1+√A)2k
(ak+1−√Aak+1+√A)2n
= ⎡⎢ ⎢ ⎢⎣12(ak+Aak−√A)12(ak+Aak)+√A⎤⎥ ⎥ ⎥⎦2n
=[(ak)2+A−2ak√A(ak)2+A−2ak√A]2n
=(ak−√A)2(ak+√A)2
=[ak−√Aak+√A]21
=[a1−√Aa1+√A]2k
⇒ P(n) is true for n = k + 1
⇒ P(n) is true for all nϵN by PMI.