wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given A (-5, 2) and B is the point on the locus whose equation is x2+y22x+4y+8=0. If the point P divides segment AB externally in the ratio 2:1, find the equation of locus of P.

Open in App
Solution

Given (5,2)A

B(x,y) where x2+y22x+4y+8=0

(x22x+1)+(y2+4y+4)+3=0

(x1)2+(y+2)2+3=0

Let P be (α,β)

(Refer image)
m=2n=1

α=2x1(5)(21),β⎜ ⎜ ⎜2y12(21)⎟ ⎟ ⎟

α=2x+5 ; β=2y2

x=(α52) and y=(β+22)

but (x1)2+(y+2)2+3=0

(α521)2+(β+22+2)+3=0

(α521)2+(β+62+2)+3=0

lower of P(α,β) is (α1)2+(β+6)2+12=0

1349882_698697_ans_c2f1089ebedc44d0977b9fa535a57073.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon