Given, a+b=10,a2+b2=58, then find a3+b3=
Given a+b =10
so (a+b)2=a2+b2+2ab102=58+2ab∴2ab=100−58=42∴ab=21(a+b)3=a3+b3+3ab(a+b)103=a3+b3+3×21×10∴a3+b3=1000−630=370
If a+b+c=10 and a2+b2=58,find the value of a3+b3