Given A = [2−3−47], compute A−1 and show that 2A−1=9I−A.
Here A = [2−3−47] ⇒ adj.A = [7342] and |A| = [2−3−47] = 14-12= 2
∴A−1=adjA|A|=12[7342]
Now 2A−1=[7342] and , 9I−A=9 [1001]−[2−3−47]=[9009]−[2−3−47]=[7342]
Clearly , 2A−1=9I−A.