1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Purely Real
Given a=xy-...
Question
Given
a
=
x
y
−
z
;
b
=
y
z
−
x
;
c
=
z
x
−
y
, where
x
,
y
,
z
are not all zero, prove that
:
1
+
a
b
+
b
c
+
c
a
.
Open in App
Solution
Given:-
a
=
x
y
−
z
b
=
y
z
−
x
c
=
z
x
−
y
To prove:-
1
+
a
b
+
b
c
+
c
a
=
0
Proof:-
a
b
=
x
y
−
z
×
y
z
−
x
=
x
y
(
y
−
z
)
(
z
−
x
)
b
c
=
y
z
−
x
×
z
x
−
y
=
y
z
(
z
−
x
)
(
x
−
y
)
c
a
=
z
x
−
y
×
x
y
−
z
=
x
z
(
x
−
y
)
(
y
−
z
)
1
+
a
b
+
b
c
+
c
a
=
0
1
+
x
y
(
y
−
z
)
(
z
−
x
)
+
y
z
(
z
−
x
)
(
x
−
y
)
+
x
z
(
x
−
y
)
(
y
−
z
)
=
0
1
+
x
y
(
x
−
y
)
+
y
z
(
y
−
z
)
+
z
x
(
z
−
x
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
x
2
y
−
x
y
2
+
y
2
z
−
y
z
2
+
z
x
(
z
−
x
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
y
(
x
2
−
z
2
)
+
y
2
(
z
−
x
)
+
z
x
(
z
−
x
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
(
z
−
x
)
(
−
y
(
x
+
z
)
+
y
2
+
z
x
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
(
z
−
x
)
(
y
2
−
x
y
−
y
z
+
z
x
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
(
z
−
x
)
(
y
−
x
)
(
y
−
z
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
1
+
(
−
1
)
=
0
1
−
1
=
0
L.H.S.
=
R.H.S.
Hence proved that
1
+
a
b
+
b
c
+
c
a
=
0
.
Suggest Corrections
0
Similar questions
Q.
If
a
=
x
y
−
z
,
b
=
y
z
−
x
a
n
d
c
=
z
x
−
y
where x, y, z are not all zero, prove that
1
+
a
b
+
b
c
+
c
a
=
0
.
Q.
Given
a
=
x
(
y
−
z
)
,
b
=
y
(
z
−
x
)
,
c
=
z
(
x
−
y
)
, where
x
,
y
and
z
are not all zero, then the value of
a
b
+
b
c
+
c
a
is
Q.
Given that a(y + z) = x, b (z + x) = y , c(x + y) = z, shew that bc + ca+ ab + 2abc = 1.
Q.
If
a
(
y
+
z
)
=
x
,
b
(
z
+
x
)
=
y
,
c
(
x
+
y
)
=
z
, prove that
x
2
a
(
1
−
b
c
)
=
y
2
b
(
1
−
c
a
)
=
z
2
c
(
1
−
a
b
)
.
Q.
If
b
c
y
+
z
=
a
c
z
+
x
=
a
b
x
+
y
. then show that
a
(
b
−
c
)
y
−
z
=
b
(
c
−
a
)
z
−
x
=
c
(
a
−
b
)
x
−
y
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Explore more
Purely Real
Standard XI Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app