Given a real-valued function f such that f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩tan2{x}(x2−[x]2),forx>01,forx=0√{x}cot{x},forx<0 where [x] is the integral part and x is the fractional part of x, then
A
limx→0+f(x)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→0−f(x)=cot1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cot−1(limx→0−f(x))2=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(limx→0+f(x))=π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Alimx→0+f(x)=1 Dcot−1(limx→0−f(x))2=1 We have limx→0+f(x)=limx→0+tan2{x}(x2−[x]2) =limx→0+tan2xx2=1 (∵x→0+,[x]=0⇒{x}=x) Also, limx→0−f(x)=limx→0√{x}cot{x}=√cot1 (∵x→0−,[x]=−1⇒{x}=x+1⇒{x}→1) Also, cot−1(limx→0−f(x))2=cot−1(cot1)=1.