Given A=sin2θ+cos4θ then for all real values of θ
1≤A≤2
34≤A≤1
1316≤A≤1
34≤A≤1316
Explanation for the correct option:
Find the domain of A:
A=sin2θ+cos4θ
=1–cos2θ+cos4θ ∵sin2A+cos2A=1
=1–cos2θ(1–cos2θ)
=1–cos2θ(sin2θ)
=sin2θ+cos2θ−sin2θcos2θ
=1−14(2sinθcosθ)2 ∵sin2A=2sinAcosA
=1–14sin2(2θ)
As we know, 0≤sin2(2θ)≤1
⇒ 0≤14sin2(2θ)≤14
⇒ 34≤1–14sin2(2θ)≤1
∴34≤A≤1
Hence, Option ‘B’ is Correct.
If A=sin2θ+cos4θ, then for all real value of θ: