wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given a1=12a0+Aa0,a2=12a1+Aa1 and an+1=12an+Aan for n ≥ 2, where a > 0, A > 0.
Prove that an-Aan+A=a1-Aa1+A2n-1

Open in App
Solution

Let:Pn:an-Aan+A=a1-Aa1+A2n-1Step I P(1):a1-Aa1+A=a1-Aa1+A21-1 (which is true)P(2):a2-Aa2+A=12a1+Aa1-A12a1+Aa1+A=a1+Aa1-2Aa1+Aa1+2A=a1+A-2Aa1+A+2A=a1-Aa1+A22-1Thus, P(1) and P(2) are true.Step II Let P(k) be true.Now, ak-Aak+A=a1-Aa1+A2k-1 .....(i)andP(k+1):ak+1-Aak+1+A=12ak+Aak-A12ak+Aak+A=ak+Aak-2Aak+Aak+2A=ak-Aak2ak+Aak2=ak-Aakak+Aak2=ak-Aak+A2=a1-Aa1+A2k-12=a1-Aa1+A2k=a1-Aa1+A2k+1-1 Thus, P(k+1) is also true.

=akak+Aak-Aak+A2k-1-Aak-Aak+A2=akak+Aak-Aak+A2k-1-Aak+Aak-Aak+A2k-1ak+A2 Using (i)=ak+Aak-Aak+A2k-1ak-Aak+A2=ak-Aak+A2k-1ak-Aak+A=ak-Aak+A2k-1ak-Aak+A=ak-Aak+A2k-1+1=a1-Aa1+A2k-12k-1+1=

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fear of the Dark
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon