wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given α+β+Υ=π, prove that sin2α+sin2βsin2Υ=2sinαsinβcosΥ

Open in App
Solution

=1cos2α+sin2βsin2γ
=1[cos2αsin2β]sin2γ
=1cos(α+β).cos(αβ)sin2γ
=1cos(πγ).cos(αβ)1+cos2γ
=cosγ.cos(αβ)+cos2γ
=cosγ(cos(αβ)+cos(π(α+β))
=cosγ(cos(αβ)cos(α+β))
=cosγ(2sinα.sinβ)
=2sinα.sinβ.cosγ
Here use formula
1cos2asin2b=cos(a+b).cos(ab)
2cosccosd=2sin+d2.sindc2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon