(i)
Let set
A={ 5,6,7 }.
Let R be a relation on A defined as R={ ( 5,6 ),( 6,5 ) }.
( 5,5 )∉R. Hence R is not reflexive.
( 5,6 )∈R,.and ( 6,5 )∈R. Hence, Ris symmetric.
( 5,6 ),( 6,5 )∈R, but ( 5,5 )∉R, hence Ris not transitive.
Hence, the relation R={ ( 5,6 ),( 6,5 ) } on set A={ 5,6,7 } is symmetric, but neither reflexive nor transitive.
(ii)
Let relation R in set R of real numbers be defined as R={( a,b ):a<b}.
( a,a )∉R, since for all values of a, a∈R, a=a. Hence, R is not reflexive.
Let ( a,b )∈R, thus a<b. Then ( b,a )∉R since b>a. Hence, Ris not symmetric.
Let ( a,b ),( b,c )∈R, thus a≤b and b≤c. So, a≤c implies ( a,c )∈R, hence Ris transitive.
Therefore, the given relation R={( a,b ):a<b} in set R of real numbers is transitive, but neither reflexive nor symmetric.
(iii)
Let A={ 4,6,8 }. Let a relation R on A be defined as R={ ( 4,4 ),( 6,6 ),( 8,8 ),( 4,6 ),( 6,4 ),( 6,8 ),( 8,6 ) }.
( a,a )∈R, for all values a∈A. Hence, R is reflexive.
( a,b )∈R, for all values of, a,b∈Aand ( b,a )∈R for all values of, a,b∈A. Hence, Ris symmetric.
( 4,6 ) and ( 6,8 )∈R, but ( 4,8 )∉R, hence Ris not transitive.
Therefore, the given relation R={ ( 4,4 ),( 6,6 ),( 8,8 ),( 4,6 ),( 6,4 ),( 6,8 ),( 8,6 ) } in set A={ 4,6,8 } is reflexive and symmetric but not transitive.
(iv)
Let a relation R in set R of real numbers be defined as R={ ( a,b ): a 3 ≥ b 3 }.
( a,a )∈R, since a 3 = a 3 for all values of a, a∈A. Hence, R is reflexive.
( 2,1 )∈R, since 2 3 > 1 3 or 8>1, but ( 1,2 )∉R since, 1 3 < 2 3 or 1<8. Hence, Ris not symmetric.
Let ( a,b ) and ( b,c )∈R. Hence a 3 > b 3 and b 3 > c 3 , so a 3 > c 3 . Thus ( a,c )∈R, hence Ris transitive.
Therefore, the given relation R={ ( a,b ): a 3 ≥ b 3 } in set R of real numbers is reflexive and transitive, but not symmetric.
(v)
Let A={ −5,−6 }. Let a relation R on A be defined as R={ ( −5,−6 ),( −6,−5 ),( −5,−5 ) }.
( −6,−6 )∉R. Hence R is reflexive.
( −5,−6 )∈R, and ( −6,−5 )∈R. Hence, Ris symmetric.
( −5,−6 ) and ( −6,−5 )∈Rimply ( −5,−5 )∈R, hence Ris transitive.
Therefore, the given relation R={ ( −5,−6 ),( −6,−5 ),( −5,−5 ) } on the set A={ −5,−6 } is symmetric and transitive, but not reflexive.