wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Given an isosceles triangle with equal sides of length b, base angle α<π4 and R,r the radii and O,I the centres of the circumcircle and incircle, respectively.Then

A
R=12bcscα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
=2b2sin2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r=bsin2α2(1+cosα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
OI=∣ ∣ ∣ ∣bcos(3α2)2sinαcos(α2)∣ ∣ ∣ ∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A R=12bcscα
C r=bsin2α2(1+cosα)
D OI=∣ ∣ ∣ ∣bcos(3α2)2sinαcos(α2)∣ ∣ ∣ ∣
R=b2sinα=b2cscα
=12b2sin(1802α)=12b2sin2α
and r=4Rsinα2sinα2sin(90α)
Substitute R=12b2sin2α in above equation
r=4(b2sinα)sin2α2cosα
Multiply and divide both sides by sinα we get
=4(b2sinα)sin2α2cosα×sinαsinα
=bsinαsin2α22sinαcosαsinalpha
=bsinαsin2α2sin2αsinα
=bsin2α2sin2αsin2α
=b(1cosα)sin2α2(1cos2α)
=b(1cosα)sin2α2(1cosα)(1+cosα)
=bsin2α2(1+cosα)
and OI=(R22Rr)
=R(12rR)
=R14cosα+4cos2α
=R(2cosα1)2
=R(2cosα1)
=R[2(2cos2α21)1]
=R[4cos2α23]
Multiply and divide by cosα2 we get
=R[4cos3α23cosα2]cosα2
=Rcos3α2cosα2
=∣ ∣ ∣ ∣b2sinαcos3α2cosα2∣ ∣ ∣ ∣
=∣ ∣ ∣bcos3α22sinαcosα2∣ ∣ ∣

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Representation of Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon