Geometrical Representation of Algebra of Complex Numbers
Given an isos...
Question
Given an isosceles triangle with equal sides of length b, base angle α<π4 and R,r the radii and O,I the centres of the circumcircle and incircle, respectively.Then
A
R=12bcscα
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
△=2b2sin2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r=bsin2α2(1+cosα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
OI=∣∣
∣
∣
∣∣bcos(3α2)2sinαcos(α2)∣∣
∣
∣
∣∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AR=12bcscα Cr=bsin2α2(1+cosα) DOI=∣∣
∣
∣
∣∣bcos(3α2)2sinαcos(α2)∣∣
∣
∣
∣∣ R=b2sinα=b2cscα △=12b2sin(180−2α)=12b2sin2α and r=4Rsinα2sinα2sin(90−α) Substitute R=12b2sin2α in above equation r=4(b2sinα)sin2α2cosα Multiply and divide both sides by sinα we get =4(b2sinα)sin2α2cosα×sinαsinα =bsinαsin2α22sinαcosαsinalpha =bsinαsin2α2sin2αsinα =bsin2α2sin2αsin2α =b(1−cosα)sin2α2(1−cos2α) =b(1−cosα)sin2α2(1−cosα)(1+cosα) =bsin2α2(1+cosα) and OI=√(R2−2Rr) =R√(1−2rR) =R√1−4cosα+4cos2α =R√(2cosα−1)2 =R(2cosα−1) =R[2(2cos2α2−1)−1] =R[4cos2α2−3] Multiply and divide by cosα2 we get =R[4cos3α2−3cosα2]cosα2 =Rcos3α2cosα2 =∣∣
∣
∣
∣∣b2sinαcos3α2cosα2∣∣
∣
∣
∣∣ =∣∣
∣
∣∣bcos3α22sinαcosα2∣∣
∣
∣∣