Given an isosceles triangle with equal sides of length b, base angle α<π4 and R,r are the radii of circumcircle and incircle and O,I are the centres of circumcircle and incircle respectively. Then:
A
R=12b cosec α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Δ=2b2sin2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
r=bsin2α2(1+cosα)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
OI=∣∣
∣
∣
∣∣bcos(3α2)2sinαcos(α2)∣∣
∣
∣
∣∣
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is DOI=∣∣
∣
∣
∣∣bcos(3α2)2sinαcos(α2)∣∣
∣
∣
∣∣ In triangle OAB,RsinA2=bsin2α⇒R=b2sinα=b2cosec α(∵A=π−2α) Δ=12b2sinA=12b2sin(180∘−2α)=12b2sin2α
Also, we have r=4Rsinα2sinα2sin(90∘−α) ⇒r=2bsinαsin2α2cosα ⇒r=b(1−cosα)sin2α2(1−cos2α) ⇒r=bsin2α2(1+cosα)
Now, we have OI=√R2−2Rr=R√(1−2rR) =R√1−4cosα+4cos2α=R(2cosα−1) =R{2(2cos2α2−1)−1}=R(4cos2α2−3) ⇒OI=R(4cos3α2−3cosα2)cosα2=Rcos3α2cosα2 ⇒OI=∣∣
∣
∣
∣∣bcos(3α2)2sinαcos(α2)∣∣
∣
∣
∣∣