Given angle A=60∘, c=√3−1, b=√3+1. Solve the triangle
A=60∘⇒B+C=120∘We know, tanB−C2=b−cb+ccotA2⇒tanB−C2=(√3+1)−(√3−1)(√3+1)+(√3−1)cot(602)=22√3(√3)=1∴B−C2=45∘⇒B−C=90∘B+C=120∘∴B=105∘ and C=15∘,From sine rule,a=b sinAsinB=√3+1(sin60sin105)sin105=sin(60∘+45∘)=√32(1√2)+12(1√2)=√3+12√2a=(√3+1)(√3)(2)(√2)(√3+1)2=√6∴a=√6, B=105∘, C=15∘
Option d is correct.