Given ax2+bx+c≥0,bx2+cx+a≥0,cx2+ax+b≥0 where a≠b≠c and a,b,cϵR. Now
a2+b2+c2ab+bc+ca cannot take the value(s)
79
27
163
−32
a>0, b >0, c >0 and
b2−4ac≥0,c2−4ab≤0,a2−4bc≤0
⇒a2+b2+c2≤4(ab+bc+ca)
And (a−b)2+(b−c)2+(c−a)2≥0
⇒1≤a2+b2+c2ab+bc+ca≤4