(A)∵y2−4x−2y+5=0 is arranged as
y2−2y+1−1−4x+5=0
⇒y2−2y+1=4x−4
⇒(y−1)2=4(x−1)
Let y−1=Y and x−1=X
∴Y2=4X
On comparing with Y2=4aX we get a=1
According to the quaestion X>2a
or x−1>2 for a=1
or x>2+1=3
∴x takes the values >3
∴x=4,5,6,7,8
(B)∵4y2−32x+4y+65=0
⇒4(y2+y)−32x+65=0
⇒4(y2+y+(12)2−(12)2)−32x+65=0
⇒4(y+12)2=32x−65+1=32x−64
⇒4(y+12)2=32(x−2)
⇒(y+12)2=8(x−2)
Let y+12=Y and x−2=X
∴Y2=8X
On comparing with y2=4ax we get a=2
According to the question, X>2a
⇒x−2>4
or x>6
∴x=7,8
(C)∵4y2−16x−4y+41=0
⇒4(y2−y+(12)2−(12)2)−16x+41=0
⇒4(y−12)2=16x−41+1=16x−40
⇒4(y−12)2=8(2x−5)
⇒(y−12)2=2(x−2)=4(x−52)
Let y−12=Y and x−52=X
∴Y2=4X
On comparing with y2=4ax we get a=1
According to the question, X>2a
⇒x−52>2
or x>92=4.5(approx.)
∴x=5,6,7,8