(A)∵√xa+√yb=1
On squaring both sides, we get
xa+yb+2√xyab=1
or xa+yb−1=2√xyab
Again squaring both sides, we get
x2a2+y2b2+1+2xyab−2yb−2xa=4(xyab)
⇒x2a2+y2b2−2(xyab)+1−2yb−2xa=0 .......(1)
Now, comparing (1) with Ax2+2Hxy+By2+2Gx+2Fy+C=0 then
A=1a2,H=−1ab,B=1b2,G=−1a,F=−1b,C=1
On substituting the above values in the below condition,
△=ABC+2FGH−AF2−BB2−CH2
=1a2b2−2a2b2−1a2b2−1a2b2−1a2b2
=−4a2b2≠0
and H2=AB
∵△≠0,H2=AB
∴ conic is non-degenerate and a parabola.
(B)Now comparing 3x2+10xy+3y2−15x−21y+18=0
with ax2+2hxy+by2+2gx+2fy+c=0 we get
a=3,h=5,b=3,g=−152,f=−212,c=18 ,
On substituting the above values in below condition, we get
=△=abc+2fgh−af2−bg2−ch2
=3×3×18+2×−212×−152×5−3×(−212)2−3×(−152)2−18×(5)2
=162+288−450=450−450=0
and h2≠ab
∵△=0,h2≠ab the conic is degenerate and a pair of intersecting straight lines.
(C)Now comparing 8x2−4xy+5y2−16x−14y+17=0 with
ax2+2hxy+by2+2gx+2fy+c=0 we get
a=8,h=−2,b=5,g=−8,f=−7,c=17
On substituting the above values in below condition, we get
△=abc+2fgh−af2−bg2−ch2
=8×5×17+2×−7×−8×−2−8×(−7)2−5×(−8)2−17×(−2)2
=255−224−147−320−68=−504≠0
and h2<ab
∴△≠0 and h2<ab then conic is non-degenerate and an ellipse.