Given C = 400 + 0.9Y and I = 4,000, find : (i) equilibrium Y, (ii) S and C at equilibrium Y.
Equilibrium Y is found when, Y = C + I
Substituting the values, we get :
Y = 400 + 0.9Y + 4,000
Or, Y−0.9Y=400+4,000⇒0.1Y=4,400
Thus, Y=4,4000.1=44,000
C at equilibrium : C=¯C+MPC.Y
=400+0.9(44,000)
=400+39,600=40,000
S at equilibrium : S=−¯S+MPS.Y
=−400+0.1(44,000)
=−400+4,400=4,000
Alternatively, in equilibrium, S = I
Since I = 4,000 (given), S must be equal to 4,000.