We have,
cosθ=q√p2+q2
Since,
⇒cscθ+cotθcscθ−cotθ
⇒1sinθ+cosθsinθ1sinθ−cosθsinθ
⇒1+cosθ1−cosθ
On putting the value of cosθ, we get
⇒1+q√p2+q21−q√p2+q2
⇒√p2+q2+q√p2+q2−q
⇒√p2+q2+q√p2+q2−q×√p2+q2+q√p2+q2+q
⇒(√p2+q2+q)2(√p2+q2)2−q2
⇒p2+q2+q2+2q√p2+q2p2+q2−q2
⇒p2+2q2+2q√p2+q2p2
Hence, this is the answer.