Given f(x)=1[1-x], g(x)=f(f(x)) and h(x)=f(f(f(x))). Then the value of f(x).g(x).h(x) is
-1
1
2
3
Explanation for the correct option:
Find the value of f(x).g(x).h(x):
g(x)=f(f(x))
g(x)=11–1(1–x)
=1–x-x
=x–1x
h(x)=f(f(f(x)))
=11-x-1x
=xx-x+1
=x
∴f(x).g(x).h(x)=11-x×x-1x×x
=-1x-1×x-1x×x
=-1
Hence, Option ‘A’ is Correct.
If f, g, h are real functions defined by f(x)=√x+1,g(x)=1x and h(x)=2x2−3, then find the values of (2f + g - h) (1) and (2f + g - h) (0).