Given f(x) = ax2+bx+c
If f(m) = a - b + c
f(n) = 4a + 2b + c
f(p) = a + b + c
Then, m + n + p = __
f(x)=ax2+bx+c
f(−1) = a(−1)2+b(−1)+c = a - b + c
f(2) = a(2)2+b(2)+c = 4a + 2b + c
f(1) = a + b + c
hence, m = -1, n = 2, p = 1
So, m+n+p = 2
For the expression f(x) = a x2 + bx + c, (a > 0), the condition for both real roots of f(x) to be greater than (or) lesser than a real value M is,