Given f(x) = g(X) . h (x) and f′(x)=g′(x)h(x) + g(x)h′(x) find f'(x) where f(x) = x sin x.
sin x + x cos x
Given, f(x) = x sinx.
We can assume, g(x) = x and h(x) = sin x.
Therefore, f′(x) = g′(x) h (x) + g(x)h′(x)
= d(x)dxsinx+x.dsinxdx
Clearly, dxdx=1 and d(sinx)dxcosx
∴f′(x)=1(sinx)+x(cosx)
=sinx+xcosx .