We have, 2x+23y=16……(1)
3x+2y=0……(2)
Putting 1x=u and 1v=u, we get
2u+23v=16……(3)
3u+2v=0……(4)
Multiplying equation (4) by 13, we get
u+23v=0……(5)
Subtracting equation (5) from equation (3), we get
u=16
Putting u=16 in (4), we get
3(16)+2v−0⇒12+2v−0
⇒2v=−12⇒v=−14
Now, u=16⇒1x=16⇒x=6
and, v=−14⇒1y=−14⇒y=−4
Hence, the solution is x = 6, y = -4. Again,
y=ax−4⇒−4⇒a(6)−4
⇒6a=−4+4⇒6a=0
⇒a=06=0