Given : log xlog y=32 and log (xy)=5; find the values of x and y.
log xlog y=32
⇒ log y=2 log x3 ........... 1
log (xy)=5
⇒log x+log y=5 ...... 2
let log x = a
using 1 we get
a+2a3=5
⇒ 3a+2a=15
⇒ a=3
so logx=3
⇒ x=103
so, x = 1000
so, log y=2 logx3
⇒ log y=2
y=102 = 100