The correct options are
A g′(x)=f(x)g(x) B g has a relative maximum at
x=0 C f has a point of inflection at
x=0f′(x)=(g(x))2(g(x))2−(f(x))2=1
Let f(x)=y
⇒dydx−y2=1⇒dydx=1+y2⇒∫11+y2dy=∫dx⇒tan−1(y)=x⇒y=f(x)=tan(x)⇒g(x)=√f′(x)=√sec2x=±secx
But g(x)<0⇒g(x)=−secx
A) g′(x)=−secxtanx=g(x)f(x)
Hence, A is correct
B) g′′(x)=−(secxsec2x+secxtan2x)=−secx(sec2x+tan2x)
For x=0⇒g′(x)=−−secxtanx=0g′′(x)=−secx(sec2x+tan2x)=−1<0
⇒g has a relative maximum at x=0
C) f′(x)=sec2x,f′′(x)=2sec2xtanxf′′(0)=0
⇒f(x) has a point of inflection at x=0
D) f(x)=tanx⟶ a periodic function
Hence, g′(x)=f(x)g(x),g has a relative maximum at x=0 and f has a point of inflection at x=0