Given : In quadrilateral ABCD ; ∠C=64o, ∠D=∠C−8o;∠A=5(a+2)o and ∠B=2(2a+7)o.
∵∠C=64o (Given)∴∠D=∠C=8o=64o−8o=56o∠A=5(a+2)o∠B=2(2a+7)oNow ∠A+∠B+∠C+∠D=360o5(a+2)o+2(2a+7)o+64o+56o=360o5a+10+4a+14o+64o+56o=360o9a+144o=360o9a=360o−144o9a=216oa=24o∴∠A=5(a+2)=5(24+2)=130o.