Given limx→af(x)=2 and limx→ag(x)=3
Match th columns
Column 1Column 21.limx→a(f(x)×g(x))P.82.limx→a(f(x)−g(x))Q.103.limx→a(f(x)g(x))×15R.−14.limx→a(f(x)g(x))S.6
1 - S, 2 - R, 3 - Q, 4 - P
If limx→af(x)=L and limx→ag(x)=m then limx→a(f(x)g(x))=Lm. This is true for other operations like
multiplication, division, subtraction and addition. We can apply the limit independently.
⇒ 1)limx→a(f(x)×g(x))=limx→af(x)×limx→ag(x)
=1×3=6
2)limx→a(f(x)−g(x))=2−3
=−1
3)limx→a(f(x)g(x))×15=15×23
4)limx→a(f(x)g(x))=23=8