The correct option is D 11√8
L1:x−2=y−10=x+21
L2:x+10=y+12=z−2−1
L1:(0^i+1^j−2^k)+λ(−2^i+0^j+^k)
L2:(−^i−^j+2^k)+μ(0^i+2^j−^k)
S.D. =[(−1−1)^i+((−1−(+1))^j(+2−(−2))^k].((−2,0,1)∗(0,2,−1))(−2,0,1)∗(0,2,−1)
=∣∣
∣
∣∣^i^j^k−20102−1∣∣
∣
∣∣=−2^i+2^j−4^k√32
S.D.==(−^i−2^j+4^k).(−2^i+2^j−4^k)√32
=(−2−4−16)√32
=∣∣∣−22√32∣∣∣
=∣∣∣−11√8∣∣∣
=11√8