Let the fixed point O be chosen as origin and any straight line through O be
x−0cosθ=y−0sinθ=riAi,rA
∴OAi=ri,OA=r
Again let the given n straight lines be
pi x+qi y=1(i=1,2,3,......n)
The point Ai is (ricosθ,risinθ) and it lies on the above line
∴(picosθ+qisinθ)ri=1
∴1OAi=1ri=picosθ+qisinθ
∴n∑i=11OAi=n∑i=1picosθ+n∑i=1qisinθ=nr
∴n∑i=1pin(rcosθ)+n∑i=1qin(rsinθ)=1
Therefore locus of the point A(rcosθ,rsinθ) is
∑pinx+∑qiny=1
Above equation represents a straight line.