We know that two sets A and B are associative if A∩(B∩C)=(A∩B)∩C and A∪(B∪C)=(A∪B)∪C.
The given sets are P={a,b,c,d,e}, Q={a,e,i,o,u} and R={a,c,e,g}
(i) P∩(Q∩R)=(P∩Q)∩R
P∩(Q∩R)={a,b,c,d,e}∩[{a,e,i,o,u}∩{a,c,e,g}]={a,b,c,d,e}∩{a,e}={a,e}......(1)(P∩Q)∩R=[{a,b,c,d,e}∩{a,e,i,o,u}]∩{a,c,e,g}={a,e}∩{a,c,e,g}={a,e}......(2)
From equations 1 and 2, we get that P∩(Q∩R)=(P∩Q)∩R.
(ii) P∪(Q∪R)=(P∪Q)∪R
P∪(Q∪R)={a,b,c,d,e}∪[{a,e,i,o,u}∪{a,c,e,g}]=
{a,b,c,d,e}∪{a,c,e,q,i,o,u}={a,b,c,d,e,g,i,o,u}......(3)(P∪Q)∪R=[{a,b,c,d,e}∪{a,e,i,o,u}]∪{a,c,e,g}=
{a,b,c,d,e,i,o,u}∪{a,c,e,g}={a,b,c,d,e,g,i,o,u}......(4)
From equations 3 and 4, we get that P∪(Q∪R)=(P∪Q)∪R.
Hence, the sets P={a,b,c,d,e}, Q={a,e,i,o,u} and R={a,c,e,g} are associative.