The correct option is
B 6REF.Image.
P=(1,-2) & Q = (7,6)
distance b/w PQ = √(7−1)2+(6+2)2=√62+82
=√100
=10
radius of circle with centre (1,2) & point (0,0)
(x−1)2+(y+2)2=r21
putting (0,0) =12+22=r21
1+4=r21=5⇒r1=√5
lll y with centre (7, 6) of pt.(0,0)
(x−7)2+(y−6)2=r22
(putting (0,0)) 72+(−6)2=r22
49+36=r22=85⇒r2=√85
Now, the length OB i.e the common cord is given by
=(d2−(r1−r2)2)((r1+r2)2)−d2d2
=((10)2)−(√5−√85)2)((√5+√85)2−(10)2)(10)2
⇒(100−(√5(1−√17))2)((√5(1+√17))2)−10010
=(100−5(1+17−2√17))(5(1+17+2√17)−100)100
=(10+10√7)(10√7−10)100.(10√7)2−(10)2100
=100×7−100100=600100=6
distance / length of common chord = 6